Visualization of Colloid Transport Pathways in Mineral Soils Using Titanium(IV) Oxide as a Tracer.

نویسندگان

  • Stefan Koch
  • Petra Kahle
  • Bernd Lennartz
چکیده

In soils, colloidal transport has been identified as the most important pathway for strong adsorbing, environmental contaminants like pesticides, heavy metals, and phosphorus. We conducted a comparative dye tracer experiment using a Brilliant Blue (BB) solution and a Titanium(IV) oxide (TiO) colloid suspension (average particle size 0.3 μm), aiming to visualize and quantify colloid pathways in soils. Both dye tracers showed comparable general flow patterns with preferred transport over the deepest part of the soil profile, independent of clay content. The stained area was generally smaller for TiO than for BB by a factor of ten, however, and there was no TiO to be found at all in the low clay content soil. The travel distance was almost identical for the solution and the suspension (0.7 m) giving evidence that environmentally critical compounds bound to microparticles may be vertically transported over longer distances in soils, even within single rainfall events. The spatial variability of the dye patterns was large on a small scale with a range of 0.35 m for TiO in the horizontal plane, which was taken as a general proof for a pronounced preferential transport situation. The study indicates that TiO is transported exclusively through singular macropores of biogenetic nature, while BB passes also through the soil matrix of coarse-bedded soils, the secondary pore system or interaggregate pore space. The results emphasize the general suitability of TiO for the visualization of colloid transport pathways in soils, opening up new research opportunities for contaminant transport in soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable U(IV) complexes form at high-affinity mineral surface sites.

Uranium (U) poses a significant contamination hazard to soils, sediments, and groundwater due to its extensive use for energy production. Despite advances in modeling the risks of this toxic and radioactive element, lack of information about the mechanisms controlling U transport hinders further improvements, particularly in reducing environments where U(IV) predominates. Here we establish that...

متن کامل

Titanium Oxide (TiO2) Coatings on NiTi Shape Memory Substrate Using Electrophoretic Deposition Process

The aim of the present research is to convert bioinert surface of NiTi to bioactive and biocompatible surface. In order to develop a bioactive and corrosion resistant film on NiTi, electrophoretic deposition process was done and TiO2 particles were deposited on the NiTi surface. Suspensions including TiO2 particles were prepared using a mixture of acetone and n-butanol (0%, 30%, 60%, 80% and 10...

متن کامل

Colloid Deposition and Release in Soils and Their Association With Heavy Metals

Colloid transport in subsurface has received considerable attention recently because mobile colloids can facilitate the transport of heavy metals in soils to contaminate groundwater. Many studies on colloid mobility in the subsurface consider soils as well-defined porous media. Though similar in many aspects, soils are different from well-defined porous media. The authors emphasize the impacts ...

متن کامل

تأثیرات مقدار نانو اکسید تیتانیوم (IV) زیر میکرون بر خواص پیشرانه HTPB/AP/Al

Titanium (IV) oxide as a burning rate catalyst is commonly used in some of the solid composite propellants. As the particle size of this component decreases, the final properties of the propellant will be changed. In this research, effects of using submicron titanium oxide, up to 0.5 percent by weight, have been investigated on properties of an HTPB/AP/Al propellant. TiO2 powder has relatively ...

متن کامل

Characterization of complex mineral assemblages: implications for contaminant transport and environmental remediation.

Surface reactive phases of soils and aquifers, comprised of phyllosilicate and metal oxohydroxide minerals along with humic substances, play a critical role in the regulation of contaminant fate and transport. Much of our knowledge concerning contaminant-mineral interactions at the molecular level, however, is derived from extensive experimentation on model mineral systems. Although these inves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 45 6  شماره 

صفحات  -

تاریخ انتشار 2016